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ABSTRACT 

In 1968 Sherbrooke formulated the well known  METRIC model for a two- 

echelon inventory system consisting of a set of bases and a supporting depot. 

The items stocked in the system are called recoverable items, that is, they 

are subject to repair when they fail. Sherbrooke and others have proposed a 

variety of algorithms for determining optimal base and depot stock levels. 

A substantial portion of the computational requirement associated with each 

of the algorithms is related to the search for the optimal depot stock level. 

The purpose of this paper is to describe an easily implenentable method for 

estimating the optimal depot stock level. The computational experience re- 

ported in the paper indicates the proposed method provides an excellent estimate 

of the optimal depot stock level particularly for high demand items. Further- 

more, the proposed method significantly reduces the computational requirements 

for any known algorithm for solving Sherbrooke's problem. 

  -  ..•••• — -  
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1.  INTRODUCTION 

2 
In 1968 Sherbrooke presented a mathematical model of a two-echelon in- 

ventory system consisting of a set of bases, at which primary demands occur, 

and a supporting depot which resupplies the bases when necessary. The items 

stocked in thi3 system are called recoverable items, that is, items subject 

to repair when they fail. Both the bases and depot serve two functions; they 

are both inventory stocking points as well as locations at which maintenance 

takes place. Each time a demand for an item is levied on a base supply organi- 

zation, a corresponding requirement exists to perform maintenance on a failed 

item. A base may lack adequately skilled technicians or equipment needed to 

accomplish the repair. Only in these instances will a failed item be sent to 

the depot for repair; otherwise, the base maintenance organization will repair 

the item.  The repairing location is responsible for resupplying the base 

supply organization at which the .original demand was placed. All resupply is 

done on a one-for-one basis. 

Sherbrooke describes both the problem and its formulation and analysis in 

detail in reference 2. In addition, Sherbrooke proposed a marginal analysis 

algorithm for solving the problem. Another approach has been suggested by Fox 

and Landi for determining optimal base and depot stock levels.  A substantial 

portion of the computational requirement associated with both of  these algorithms 

is related to the search for the optimal depot stock level. As will be discussed, 

this search is particularly time consuming for items having a high expected 

number of items in transit to the depot and in depot repair. 

The purpose of this paper is to develop a method for estimating the optimal 

depot stock level which is both accurate and easy to implement. Computational 

experience reported in this paper indicates the proposed method provides a very 

 ^A 
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good estimate of the optimal depot stock level. Furthermore, the proposed 

method significantly reduces the overall computational requirement for the 

1 2 
algorithms developed by Fox and Landi and Sherbrooke . 

2.  BACKGROUND 

The optimization problem posed in reference 2 by Sherbrooke for finding 

optimal stock levels for the depot-base system described in Section 1 is 

n      m 
mm y   y   y    c*. - s..)P(x|x..T..(s.r)) 

1=1 i=l x>sij 

m n 
subj ject to      I    c.     I    s   .   < C, 

i=l    x j=0    1] 

(1) 

1] 

where n       is the number of bases, 

m       is the number of items, 

is the stock level at location j for item i, 

is the depot stock level for item i, 

is the expected daily demand rate for item i at base j, 

c.      is the unit cost for item i, 

C       is the budget constraint, 

T..(s. ) is the average resupply time for base j for item i given 

the depot stock level for item i is sj0» 

Sij 

Si0 

and  PCXIA.-T^S.Q)) = e l] l]  10 
(X..T ,(s..)) 'x!, where p(x|«) 

1] in  10 ID l]  IU ij i3 

represents the probability of having x units in the resupply 

system at any point in time. 

• 
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Furthermore, Sherbrooke shows that T.,(s. ) can be expressed as 

Tij(siO> = *ijAiJ + «**U>«ij + 6<W' 

where A^.  is the average base repair time for item i at base j. 

(2) 

r.. 

i3 

is the proportion of demands requiring base repair for item i 

at base j, 

is the average ordcr-and-ship time at base j for item i, 

is the average depot repair cycle time for item i, 

* _1 

1 x>s 
6(s. )-D. = Y~   t        (x-s. )p(x|X.D.), the expected depot delay per demand 

for item i, 
iO 

and  X 
A 2 

. • I    (l-r..)X.., the expected daily depot dern emand rate for item i. 

Subsequently Fox and Landi proposed a Lagrangian formulation of Problem 1 

and suggested a relatively simple method for solving the Lagrangian problem. 

This approach requires only a small fraction of the time consumed by Sherbrooke's 

method to obtain the optimal solution. Their Lagrangian formulation of the 

problem is 

n  m n  m 
min l» I  I  I   (x-s  )p(x|X T (s  )) • 6 I      I      c s 

j=l i=l x>s..    1]     1D 1]  l0      j=0 i=l  1 1D 
(3) 

subject to  s.. = 0,1,..., 

where 9 is a Lagrangian multiplier. Fox and Landi propose to solve Problem 1 

by solving Problem 3 for a fixed finite set of multiplier values 6 ,...,9 . 

In their approach, the "optimal" value of 6 is the 0 , Ke{0,...,M}, whose 

total investment cost is closest to C. Vie will now see how the solution to 

Problem 3 is found for a given value of 9. 

I 

- - 
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Observe that ProBlem 3 is separable by lt«m.  Consequently for each 6, its 

solution can le obtained by solvir.T o independent it«a prob lens. To 

simplify the notation we rtrop the item designator in what follows. Then for 

each itsm €or a-^iven 9 we snive a problem of the form 

n n 
min X  I       (x-s )p(x|X T (s )) + 6 \    cs 

j=l x>s.    :     D 3  °      j = 0  -> 

subject to s. = 0,1,..., where j = 0,...,n. This problem can be partitioned 

as follows: 

v° 
min {9cs + I    mini  I      (x-s )p(x|X.T(sQ)) +9cSj: Sj=0,l,..., sQ fixed}}. 
,1,...       -j=l s. x>s^ (4) 

Problem 4 is not necessarily convex in s ; however, the inside minimization 

problems are convex for a fixed value of sQ. We may restate Problem 4 as 

follows: 

min   Z(s j6) 
sQ=0,l,... 

where 

Z(s ;9> = 9cs + J    min{ I      (   } ( |x.T.(s )) + ecs • s = 0,1,..., s fixed}. 
u j=l s. x>s. '  j'r< ' J J 0      3  ] u 

To determine Z(s ;9), we must solve the n base problems of the form 

min      I      (x-s )p(x|X.T (sQ)) + 6cs . 
= 0,1,... x>s^    ] 

(6) 

It is easy to see that the optimal s. for Problem 6 is the smallest nonnegative 

integer for which 

I      P(x|X T (s0)) « 
>s.     J J 

6c. (7) 
x>s. 

3 
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To find the optimal solution to Problem 5 we must implicitly examine 

Z(sQ;e) for s = 0,1,... .  In practice, however, the number of values for 

sQ that need to be examined explicitly is small.  This is due to the asympto- 

tic behavior of $(sQ).     Specifically, ö(s ) approaches 0 quite rapidly 

as s  increases beyond AD.  (Experience gained by the author in applying 

the Fox-Landi technique to real Air Force problems suggests that no more than 

15 values for s  need to be explicitly examined for any item.) Observe 

that the amount of time required to solve Problem 1 using the Fox-Landi 

algorithm is roughly proportional to the number of depot stock levels for 

which Z(s ;0) is explicitly evaluated.  Computation time required by Sher- 

brooke's algorithm to obtain the solution to Problem 1 is also proportional 

to the number of depot stock levels examined.  Consequently, if the number 

of depot stock levels that are examined explicitly can be reduced, then the 

total time required to find the optimal solution to Problem 1 can also be 

reduced. 

In the next section we develop a method that provides an excellent esti- 

mate of the optimal depot stock level. This method significantly reduces the 

computation time required to find an optimal solution to Problem 1 using 

I 
either the Fox-Landi or the Gherbrooke algorithm. 

; I 

3.  THE ESTIMATION PROCEDURE 

In the preceding section we indicated how the optimal base stock level, 

call it s.', can be determined for a given value of s  (and  6).  In 

particular, we showed that s"    is optimal if it is the smallest nonnegative 

integer for which 

I      p(x|X T.(s )) < 6c. 
x>s.     J J 

   .. _  -  
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We begin this section by developing a different but equivalent way of charac- 

terizing s.*. We then show how to find an estimate of the optimal depot 

stock level by solving a relaxed version of Problem 4 in which both the 

nonnegativity and integrality requirements for s. are dropped. 

Define the backorder function for base j for a given depot stock level 

s0 as 

B.(s.;s ) = I      (x-s.)p(x|A.T.(s )), for s. > 0 and integer, 
x>s 

and the convex piecewise linear completion of B., call it B.., as follows: 
3 J 

f~B.(t,s ), if t is a nonnegative integer. 

A j 
B.(t;s„) = / CB-(»-;»0) - B.(si-l;s(J)](t-(s.-l)) + B.(a.-l;s0), sj-l<t<sji 

where s.  is a nonnegative integer, and B.(-l;s ) = °°. 

A * 
Let AB.(s.;s„) = B.(s.;s.) - B.(s.-l;s ) when s.  is a nonnegative integer, 

and 

D(s.;sQ) = {v:  AB.(s.;sQ) < v < AB.(s.+l;sQ)}. 

Observe that D.(s.;s )U{AB.(s.;s )} is the set of subgradients of B. at 

s.. Then an alternative way of verifying that s.  is an optimal base stock 

level is to show that -6c e D(s.-s ). This alternative characterization of 

ft 
s. will be subsequently used in the development of the estimation procedure. 
3 A n 

Next let F(s ,s2,...,sn; sQ) = £  (B.(s.;s ) + 6cs ).  By dropping 
j=l   J 

both the integrality and nonnegativity restrictions on s , we obtain the 

following relaxation of Problem 4: 

-    •  - •       •  • -       
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min {6cs +    min   {F(s,,...,s ;sn):     sn    fixed}}, 
s     °s=0 1       X     n0    ° 

(8) 

If sQ is the optimal solution to Problem 4, then 

3F 
3s. 

+ 6c = 0. 
(9) 

But 
a- n 3B. 3T. 3F - V  1 1 
33n £ 3T. 3s„ 

0 3=1  j  0 

Furthermore, by writing B.(s.;s.) as  Y Kp(K+s.\\.T.(s„)), we see that 1 ]  0      ^ ^v   jl j j  0'" 

3B 

3T 

K+s.-l 
•A.T.CsJ (A.T.(s )) 

j  K=l 3 (K+s.-l):     K^  3 

K+s. 
.y.(s0) (X.T.(s0)) 

(K+s.)! 

•   ( 

= -X.AB(s.,sQ). 

Let B (s ) = l      (x-s )p(x|AD).  Data gathered during the conduct of 
x>s 

0 
the study showed that B (s ) can be closely approximated by an exponential 

function.  This result should not be entirely surprising.  The only probabilities 

entering the backorder calculation are the so-called "tail" probabilities. 

In the upper tail, the Poisson distribution behaves almost like a geometric 

distribution, that is, each succeeding probability is approximately a constant 

proportion of the preceding value.  This is particularly true for large 

values of s .  Consequently, when s  is large the expected number of 

backorders existing at any point in time at the depot is approximately a 

geometric function of s .  Thus an exponential function provides a continuous 

approximation to the relationship between depot backorders and depot stock. 

VJe therefore will approximate B^8«) by the exponential function of the form 
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0 0 
aQe    , where a  and b  are positive real numbers. 

Then using this approximation we rewrite T.(s ) as 

T.(s0)=r.A. +(l-r.)(B. +ia0e'
b°S°) 

and observe that 

3Ti    liz£ h "boso 
JT = A     aoboe 

Upon combining these observations we see that 

^-= ^ X. ABCs.-.s^-^a^e 

Recall that -9c £ D(S7JS ).  Consequently -0c approximates the 

marginal reduction in backorders at base j when the stock level at that 

base is s'.".  After making this substitution and representing this further 
J * 

9F      3F 
approximation of •=— by •=— , we see that 

0       0 

»F       $ „    v, i.   . -Vo    .   h ;Vo - -9ca„b„e S-=- *
(1

-V
X
J t ecaoV      =-ecaoV 

0    D=l   J  J 

Substituting this approximation into Equation 9 we obtain the following 

estimate of the optimal depot stock level: 

sn  = - ri ln{—£-} . (10) 
0   bo  aobo 

Recall the value of s  was derived based on an exponential approximation 

of B (s ).  /\s the average number of units in the depot repair cycle increases, 

that is, as XD increases, the quality of this exponential approximation 

improves in the region in which the optimal depot stock level should be located. 

•- -    ... - 
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Consequently, the approximation should be most accurate in these cases. But 

the items for which the search for the optimal depot stock level is most time 

consuming for both the Sherbrooke and Fox-Landi algorithms are the items 

having a large number of units in depot repair. Therefore the proposed 

approximation method will be most appropriate for those items requiring the 

greatest amount of computation. 

The approach we have described for estimating the optimal depot stock 

level has been coded and tested using a sample of 40 items found on the 

Air Force's new F-15 aircraft.  The test consisted of two sets of runs.  In 

the first set, monthly flying was divided among 3 bases; in the second set, 

the same monthly flying program was divided among 5 bases. The total budget 

distributed among the 40 items ranged from $34 million to $65 million in the 

first set of runs, and from $34 million to $88 million in the second set. 

Table 1 contains the data indicating both the optimal and estimated depot 

stock level for each item in both runs. 

The data show that there usually is no single optimal depot stock level 

for an item.  Rather the optimal value depends on the amount of total item 

system stock available for distribution among the depot and bases.  The data 

displayed in Table 1 also indicate the estimate of optimal depot stock is 

quite close to the optimal vaJue in all cases. Furthermore, the increase 

in expected system backorders using the estimated depot stock levels rather 

than the optimal levels is generally small.  For most items the increase is 

substantially ler.s than .1 backorders. 

The results of the tests indicate that it is possible to estimate closely the 

optimal depot stock l^vel using Equation 10.  Additionally, incorporating this 

method for estimating the optimal depot stock into the Fox-Landi and Sherbrooke 

algorithms will reduce the search ru-juired to find the optimal depot stock level 

 _ 
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and will therefore reduce the computational time needed to solve 

Problem 1 using these algorithms.  In the tests, the computation time for 

high demand items (XD > 20) was reduced by over 90 per cent.  Consequently, 

this approximation method is recommended for use particularly in situations 

where expected depot demand is large. 

».m.r.a— II— 
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Item 

i i 1 
• | 2 

3 
4 
5 

j 6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

* 30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

:. • J 

';• 

f     i  ' 

V- 
1 
v 

:   i' • Ui. A. 
.. .. 

Optimal Depot Stock Levels Estimated 

Case I Case II Optimal Depot 

(3 Bases) (5 Bases) Stock Levels 

4-7 5-9 6 

1,2 1-3 1 

6 6,7 6 

0-2 2,3 1 

10,11 8-12 10 

18-21 13-21,25 19 

1,2 1,2 1 

2 3,4 2 

5,6 6,7 6 

1 1,2 1 

4,5 4-6 5 

1 1 0 

0-2 0,1 0 

1-3 1-3 2 

2-4 3,4 3 

8,9 8,9 8 

1,2 1,2 1 

3,4 3-5 3 

12-14 13-14 12 

9-12 10-13 10 

21-27 22-28 23 

4,5 4-6 5 

1 1-3 1 

1,2 2,3 2 

5-7 6,7 6 

16 16 16 

3 3,4 3 

40-42 41-43 40 

8-10 9,10 9 

1 2 9 

1,2 1,2 1 

8,9 8,9 8 

4,5 5,6 5 

9-11 9,10 10 

6,7 7,8 7 

1-3 2 2 

1,2 1,2 1 

7,8 7-9 7 

2,3 3,4 3 

41-43 42-44 41 

TABLE 1 

Comparison of Optimal and Estimated 
Depot Stock Levels 
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is related to the search for the optimal depot stock level. The purpose 
of this paper is to describe an easily implementable method for estimating 
the optimal depot stock level.  The computational experience reported in the 
paper indicates the proposed method«providet; an excellent estimate of the 
optimal depot stock level particularly for high demand items.  Furthermore, 
the proposed method.significantly reduces the computational requirements for any 
known algorithm for solving Sherbrooke's problem. 
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